Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Биосфера. Понятие о географическом ландшафте





ЛЕКЦИЯ 11

Учение В.И. Вернадского о биосфере. Биосфера, ее границы, состав. Биостром. Биологический круговорот. Понятие о географическом ландшафте. Природные и антропогенные ландшафты.

Биосфера – оболочка планеты, населенная живым веществом. Живое вещество одно из самых древних известных на Земле природных тел. В химическом строении биосферы главная роль принадлежит кислороду, углероду и водороду, составляющим по весу 96,5% живого вещества, а также азоту, фосфору и сере, которые называются биофильными.

Понятие биосферы появилось в биологии в 18 в., однако первоначально оно имело совсем иной смысл, чем теперь. Биосферой именовали небольшие гипотетические глобулы (ядра органического вещества), которые якобы составляют основу всех организмов. К середине 19 ст., в биологии уточняются позиции научных представлений о реальных органических клетках, и термин «биосфера» утрачивает свой прежний смысл. К идее биосферы в ее современной трактовке пришел Ж.-Б. Ламарк (1744-1829), основатель первой целостной концепции эволюции живой природы, однако данный термин он не использовал. Впервые в близком к современному смысле понятие «биосфера» ввел австрийский геолог Э. Зюсс, который в книге «Происхождение Альп» (1875) определил ее как особую, образуемую организмами оболочку Земли. В настоящее время для обозначения этой оболочки используются понятия «биота», «биос», «живое вещество», а понятие «биосфера» трактуется так, как его толковал академик В.И. Вернадский (1863-1945). Основной труд В.И. Вернадского «Химическое строение биосферы Земли и ее окружения» был опубликован после его смерти.

Целостное учение о биосфере представлено в его ставшей классической работе «Биосфера» (1926). В.И. Вернадский определил биосферу как особую охваченную жизнью оболочку Земли. В физико-химическом составе биосферы В.И. Вернадский выделяет следующие компоненты:

- живое вещество – совокупность всех живых организмов;

- косное вещество – неживые тела или явления (газы атмосферы, горные породы магматического, неорганического происхождения и т.п.);

- биокосное вещество – разнородные природные тела (почвы, поверхностные воды и т.д.);

- биогенное вещество – продукты жизнедеятельности живых организмов (гумус почвы, каменный уголь, торф, нефть, сланцы и т.п.);

- радиоактивное вещество (образуется в результате распада радиоактивных элементов радия, урана, тория и т. д.);

-рассеянные атомы (химические элементы, находящиеся в земной коре в рассеянном состоянии);

- вещество органического происхождения (космическая пыль метеориты).

Учение В.И. Вернадского нацеливало на изучение живых, косных и биокосных тел в их неразрывном единстве, что сыграло значительную роль в подготовке естествоиспытателей к целостному восприятию природных систем.

С учетом современных представлений, биосфера включает оболочку Земли, которая содержит всю совокупность живых организмов и часть вещества планеты, находящуюся в непрерывном обмене с этими организмами. Иными словами биосфера – это область активной жизни, которая охватывает нижнюю часть атмосферы, всю гидросферу и верхние горизонты литосферы.

Структура биосферы представляет собой совокупность газообразной, водной и твердой оболочек планеты и живого вещества, их населяющего. Масса биосферы составляет приблизительно 0,05% массы Земли, а ее объем – 0,4% объема планеты. Границы биосферы определяет распространение в ней живых организмов. Несмотря на различную концентрацию и разнообразие живого вещества в разных районах земного шара, считается, что горизонтальных границ биосфера не имеет. Верхняя же вертикальная граница существования жизни обусловлена не столько низкими температурами, сколько губительным действием ультрафиолетовой радиации и космического излучения солнечного и галактического происхождения, от которого живое вещество планеты защищено озоновым экраном. Максимальная концентрация молекул озона (трехатомного кислорода) приходится на высоту 20-25 км, где толщина озонового слоя составляет 2,5-3 км. Озон интенсивно поглощает радиацию на участке солнечного спектра с длиной волны менее 0,29 мкм.

Поскольку граница биосферы обусловлена полем существования жизни, где возможно размножение, то она совпадает с границей тропосферы (нижнего слоя атмосферы), высота которой от 8 км над полюсами до 18 км над экватором Земли. Однако в тропосфере происходит лишь перемещение живых организмов, а весь цикл своего развития, включая размножение, они осуществляют в литосфере, гидросфере и на границе этих сред с атмосферой (только споры и бактерии заносятся на высоту до 20 км, в толще литосферы на глубине 4,5 км в скважинах найдены только анаэробные бактерии).

В состав биосферы полностью входит вся гидросфера (океаны, моря, озера, реки, подземные воды, ледники), мощность которой составляет 11 км. Наибольшая концентрация жизни сосредоточена до глубины 200 м, в так называемой эвфотической зоне, куда проникает солнечный свет и возможен фотосинтез. Глубже начинается дисфотическая зона, где царит темнота и отсутствуют фотосинтезирующие растения, но активно перемещаются представители животного мира, непрерывным потоком опускаются на дно отмершие растения и останки животных.

Нижняя граница биосферы в пределах литосферы лежит в среднем на глубине 3 км от поверхности суши и 0,5 км ниже дна океана (верхний слой земной коры с давлением 4 х 107Па и температурой 1000С).

Возникновение жизни и биосферы представляет собой крупнейшую проблему современного естествознания. Можно говорить о двух гипотезах – о возникновении (самозарождении) жизни и о появлении жизни из космоса.

Согласно первой гипотезе о самозарождении жизни на Земле на поверхности безжизненной планеты происходил медленный абиогенный синтез органических веществ, которые образовались из вулканических газов при разрядах молний. Примитивные организмы сформировались из белковых структур в конце раннего архея, около 3 млрд. лет назад. Первые одноклеточные организмы, способные к фотосинтезу, возникли около 2,7 млрд. лет назад, а первые многоклеточные – не менее чем на 1 млрд. лет позже. В условиях отсутствия озонового экрана жизнь могла развиваться только в прибрежных частях морей и внутренних водоемах, на дно которых проникал солнечный свет. Из органических соединений возникали многомолекулярные системы, взаимодействующие со средой, благодаря эволюции они приобретали свойства живых организмов.

Сейчас на первое место вышла космохимическая гипотеза происхождения жизни в пределах Солнечной системы (теория панспермии). Есть данные, свидетельствующие о том, что жизнь существовала на Земле намного раньше, чем 3 млрд. лет (по А.И. Опарину). Наиболее древним участком земной коры является комплекс Исуа в Западной Гренландии, возраст которого не менее 3,8 млрд. лет. В горных породах Исуа обнаружены явные следы геохимического характера, указывающие на присутствие биосферы с фотоавтотрофными организмами, следовательно, на существование жизни в это время. Однако автотрофным организмам должны предшествовать гетеротрофные, как более примитивные, поэтому начало жизни отодвигается за пределы даты в 4 млрд. лет, т.е., возможно, что жизнь на Земле существует столько же времени, сколько и сама планета. Получены данные, указывающие на существование жизни в космических условиях – обнаружены органические соединения в метеоритах и осколках астероидов, исследованиями подтверждено их биогенное происхождение.. вероятно, образование органических соединений в Солнечной системе на ранних стадиях ее эволюции было типичным и массовым явлением.

Длительное время жизнь размещалась по планете «пятнами», «пленка жизни» была прерывистой. Широкому и быстрому распространению жизни на Земле способствовали удивительная приспособляемость организмов к среде, разнообразие видов и поразительные потенциальные возможности размножения. Разнообразие видов живых организмов обеспечило заполнение всех экологических ниш. Микроорганизмы найдены в промерзающих почвах и в воде с температурой 1000С, они переносят большую концентрацию кислот, существуют в щелочной среде, микроорганизмы найдены в теплоносителях атомных реакторов.

 

Биостром. На границе атмо-, гидро- и литосферы сконцентрирована наибольшая масса живого вещества планеты, и эта земная оболочка названа биостромом (биогеосферой), или пленкой жизни. Только в ее пределах возможны жизнедеятельность и существование человека. Синонимами биогеосферы являются «эпигенема» (Р.И. Аболин), «витасфера» - сфера жизни (А.Н. Тюрюканов и В.Д. Александров), «биостром», «фитогеосфера» (Е.М. Лавренко), «фитосфера» (В.Б. Сочава), «биогеоценотический покров» (В.Н. Сукачев) и другие близкие по содержанию термины.

В структурном отношении биостром слагается из фитострома, зоострома и микробиострома. Зоостром в создании органического вещества не участвует. Роль микробиостврома в этом процессе невелика и осуществляется с помощью некоторых, в основном водных, фотосинтезирующих бактерий, хемосинтезирующих бактерий (растущих за счет химического окисления неорганического вещества) и сероводородоокисляющих бактерий (обитают в гидротермальных источниках или вблизи их на разных глубинах Океана, включая абиссаль). Основным продуцентом, создателем первичного органического вещества, был и остается фитостром. Он создает его в процессе фотосинтеза в дневные часы, закрепляя в себе в форме потенциальной энергии пищи часть энергии солнечного света.

В.И. Вернадский выделил две формы концентрации живого вещества: жизненные пленки и сгущения жизни. Жизненные пленки, занимающие огромные пространства, приурочены к границам раздела фаз. В частности, отличительной особенностью океанического биострома является наличие в нем двух пленок жизни: водно-поверхностной (эвфотической или планктонной) и донной. Планктонная пленка приурочена к эвфотической зоне Мирового океана, границе соприкосновения атмосферы и гидросферы, где с помощью фтосинтеза фитопланктон создает органическое вещество – пищу для подавляющей части организмов на всех глубинах океана. Донная пленка жизни занимает дно (бенталь) океана (заселен бентосом), находится на разделе жидкой и твердой фаз вещества. Водно-поверхностный и донный слои биострома вблизи берегов, на мелководье, смыкаются, образуя здесь единый океанический биостром, отличающийся в равной мере богатым и разнообразным планктоном и бентосом.

На суше существуют две пленки жизни – наземная и почвенная. Наземная пленка (наземный биостром) находится на поверхности почвы и полностью включает растительный покров (фитостром) и животное население суши (зоостром и микробиостром). Почвенная пленка приурочена к тонкому поверхностному слою литосферы, преобразованному почвообразующими процессами. С позиций анализа структурных частей ГО почва представляет верхний преобразованный биостромом слой современной коры выветривания. Она – вместилище подземной части биострома, место сосредоточения корневых систем и среда обитания богатой и разнообразной фауны – от крота и слепыша, до множества беспозвоночных и микроорганизмов. На суше пленки жизни имеют непосредственный контакт, и резкой границы между ними не существует.

Живое вещество в биосфере распределено неравномерно не только по вертикали, но и по площади, образуя сгущения жизни. На суше такими сгущениями жизни являются леса, болота, поймы рек и озера; в океане выделяют следующие типы сгущения жизни: прибрежное (возникает там, где перекрываются планктонная и донная пленки жизни – побережье, шельф и эстуарии рек); саргассовое (приурочено к участкам океана, занятым бурой водорослью саргассум); рифтовое (массовое мелководное поселение коралловых полипов и других морских организмов с твердым известняковым скелетом – Большой Барьерный риф в Тихом океане); апвеллинговое (образовано там, где ветры отгоняют теплую поверхностную воду от берегового склона в субтропических и тропических широтах, в результате чего на поверхность поднимается холодная глубинная вода, богатая биогенными элементами; чаще всего наблюдается у западных берегов континентов); абиссальное рифтовое (оазисы небольших размеров в глубоководных желобах и вне их, населенные рифтиями, полихетами, двухстворчатыми моллюсками, слепыми крабами и рыбами при полном отсутствии растений – открыто к северо-востоку от Галапагосских островов, на глубине 2450 м).

Функции живого вещества в биосфере. Суммарная биомасса живого вещества биосферы составляет 2-3 трл. т, причем 98% ее – это биомасса наземных растений. Биосферу населяют около 1 500 000 видов животных и 500 000 (350 000 – растений и 1 700 000 – животных по Ф.Н. Мильков, 1990) видов растений (Г.В. Войткевич, В.А. Вронский, 1989). В процессах самоорганизации биосферы живое вещество играет ведущую роль и выполняет следующие функции:

-энергетическую – перераспределение солнечной энергии между компонентами биосферы;

-средообразующую (газовую) – в процессе жизнедеятельности живого вещества создаются основные газы: азот, кислород, углекислый газ, метан и др.; живые организмы участвуют в миграциях газов и их превращениях; делятся на кислородно-диоксидуглеродную, диоксидуглеродную, азотную, углеводородную, озонную и пероксидводородную),

-концентрационную – извлечение и накопление живыми организмами биогенных элементов (кислорода, углерода, водорода, азота, натрия, магния, калия, алюминия, серы и др.) в концентрациях, в сотни тысяч раз превышающих их содержание в окружающей среде (в углях содержание углерода больше, чем в среднем для земной коры; в кораллах концентрируются карбонаты, формируется органогенный известняк; в диатомовых водорослях концентрируется кремний, в водорослях ламинариях – йод);

-деструктивную (проявляется в минерализации органического вещества);

-окислительно-восстановительную (заключается в химическом превращении веществ биосферы);

- биохимическую (связана с жизнедеятельностью живых организмов – их питанием, дыханием, размножением, смертью и последующим разрушением тел; в результате происходит химическое превращение живого вещества сначала в биокосное, а затем, после отмирания, в косное)

 

-биогеохимическая деятельность человечества (приводит к видоизменению всей планеты).

Водная функция живого вещества в биосфере связана с биогенным круговоротом воды, имеющим важное значение в круговороте воды на планете.

Выполняя перечисленные функции, живое вещество адаптируется к окружающей среде и приспосабливает её к своим биологическим (а если речь идёт о человеке, то и социальным) потребностям. При этом живое вещество и среда его обитания развиваются как единое целое, однако контроль над состоянием среды осуществляют живые организмы.

Процесс создания органического вещества в биосфере происходит одновременно с противоположными процессами потребления и разложения его гетеротрофными организмами на исходные минеральные соединения (воду, углекислый газ и др.). Так осуществляется круговорот органического вещества в биосфере при участии всех населяющих ее организмов, получивший название малого, или биологического (биотического), круговорота веществ в отличие от вызываемого солнечной энергией большого, или геологического, круговорота, наиболее ярко проявляющегося в круговороте воды и циркуляции атмосферы. Большой круговорот происходит на протяжении всего геологического развития Земли и выражается в переносе воздушных масс, продуктов выветривания, воды, растворенных минеральных соединений, загрязняющих веществ, в том числе радиоактивных.

Малый (биологический) круговорот начинается с возникновения органического вещества в результате фотосинтеза зеленых растений, то есть образования живого вещества из углекислого газа, воды и простых минеральных соединений с использованием лучистой энергии Солнца. Фотосинтез осуществляется наземными растениями, пресноводными водорослями и океаническим фитопланктоном. Образовавшиеся в листе органические вещества перемещаются в стебли и корни, где уже в синтез включаются поступившие из почвы минеральные соединения – соли азота, серы, калия, кальция, фосфора. Растения (продуценты) извлекают из почвы в растворенном виде серу, фосфор, медь, цинк и другие элементы. Растительноядные животные (консументы первого порядка) поглощают соединения этих элементов в виде пищи растительного происхождения. Хищники (консументы второго порядка) питаются растительноядными животными, потребляя пищу более сложного состава, включая белки, жиры, аминокислоты и т.д. Останки животных и отмершие растения перерабатываются насекомыми, грибами, бактериями (редуцентами), превращаясь в минеральные и простейшие органические соединения, поступающие в почву и вновь потребляемые растениями. Так начинается новый виток биологического круговорота.

В отличие от большого круговорота малый имеет разную продолжительность: различают сезонные, годовые, многолетние и вековые малые круговороты. Биологические круговороты вещества не замкнуты. При отмирании органического вещества в почву возвращаются не только те элементы, которые из нее забирались, но и новые, образованные самим растением. Некоторые вещества надолго выходят из круговоротов, задерживаясь в почве или образуя осадочные горные породы.

Образование и разрушение органического вещества – противоположные, но неотделимые друг от друга процессы. Ускорение или отсутствие одного из них неизбежно приведет к исчезновению жизни. Если будет происходить только накопление органического вещества, то атмосфера вскоре лишится углекислого газа, литосфера – фосфора, серы, калия. Следовательно, фотосинтез прекратится, и растения погибнут. С другой стороны, если увеличится скорость разложения, все органическое вещество быстро разложится до минеральных соединений и жизнь прекратится.

Понятие биогеохимического цикла. Обмен веществом и энергией, осуществляющийся между различными структурными частями биосферы и определяющийся жизнедеятельностью микроорганизмов, называется биогеохимическим циклом. Именно с введением В.И. Вернадским понятия «биогеохимический цикл» перестало существовать представление о круговороте веществ как о замкнутой системе. Все биогеохимические циклы составляют современную динамическую основу существования жизни, взаимосвязаны друг с другом и каждый из них играет свойственную ему роль в эволюции биосферы.

Отдельные циклические процессы, слагающие общий круговорот веществ в биосфере, не являются полностью обратимыми. Одна часть веществ в повторяющихся процессах превращения и миграции рассеивается или связывается в новых системах, другая возвращается в круговорот, но уже с новыми качественными и количественными признаками. Часть веществ может также извлекаться из круговорота, перемещаясь вследствие физико-геологических процессов в нижние горизонты литосферы или рассеиваясь в космическом пространстве. Продолжительность циклов круговорота тех или иных веществ чрезвычайно различна. Время, достаточное для полного оборота углекислого газа атмосферы через фотосинтез, составляет около 300 лет, кислорода атмосферы тоже через фотосинтез – 2000 – 2500, воды через испарение – около 1 млн. лет.

В большом и малом круговоротах участвует множество химических элементов и их соединений, но важнейшими из них являются те, которые определяют современный этап развития биосферы, связанный с хозяйственной деятельностью человека. К ним относятся круговороты углерода, серы и азота (их оксиды – главнейшие загрязнители атмосферы), а также фосфора (фосфаты – главный загрязнитель вод суши). Большое значение имеют круговороты токсичных элементов – ртути (загрязнитель пищевых продуктов) и свинца (компонент бензина).

Вмешательство человека в природные круговороты приводит к серьезным изменениям в состоянии биосферы. Возвращаясь к учению В.И. Вернадского, необходимо отметить, что он оценил появление человека на Земле как огромный шаг в эволюции планеты. Ученый считал, что с возникновением человека и развитием его производственной деятельности человечество становится основным геологическим фактором всех происходящих в биосфере планеты изменений, приобретающих глобальный характер: «Человечество, взятое в целом, становится мощной геологической силой». Дальнейшее неконтролируемое развитие деятельности людей таит в себе большую опасность и потому, считал В.И. Вернадский, биосфера должна постепенно превращаться в ноосферу, или сферу разума (от греческих ноос – разум, сфериа – шар).

Основателями концепции ноосферы можно считать трех ученых – видного французского математика, антрополога и палеонтолога Э. Леруа (1870-1954), французского теолога, палеонтолога и философа П. Тейяра де Шардена (1881-1955) и выдающегося российского ученого естествоиспытателя В.И. Вернадского.

Под понятием «ноосфера» В.И. Вернадский подразумевал высшую форму развития биосферы, определяемую гармонично существующими процессами развития общества и природы. Учение Вернадского утверждает принцип совместной эволюции человечества и природной среды (сейчас этот процесс называют коэволюцией), нацеливает на поиск практических путей обеспечения общественно-природного равновесия.

Понятие «ноосфера» отражает будущее состояние рационально организованной природы, новый этап развития биосферы, эпоху ноосферы, когда дальнейшая эволюция планеты будет направляться разумом в целях обеспечения необходимой гармонии в сосуществовании природы и общества.

Качественные отличия ГО ноосферного этапа развития:

-оболочка характеризуется разнообразием вещественного состава, первичное вещество преобразовывается, возникают новые почвы, породы и минералы, культурные растения и животные;

-возрастает количество механически извлекаемого материала литосферы, оно уже превышает массу материала, выносимого речным стоком;

-происходит массовое потребление продуктов фотосинтеза прошлых геологических эпох, преимущественно в энергетических целях; в ноосфере начинается уменьшение содержания кислорода и увеличение углекислого газа, среднегодовая температура планеты увеличивается (примерно на 1-1,50), что обуславливает разогрев планеты;

-присутствуют различные виды энергий, используются ядерная и термоядерная энергия;

-в пределах ноосферы наблюдается тесное взаимодействие всех компонентов, приводящее к созданию новых систем: природно-территориальных и антропогенных;

-в ноосфере проявляется разумная деятельность человека, благодаря появлению разума возникает общество (совокупность индивидуумов, личностей, способных к совместному труду);

-ноосфера выходит за пределы биосферы в связи с огромным прогрессом НТР: появляется космонавтика, обеспечивающая выход человека за пределы планеты.

Таким образом, биосфера – развивающееся образование, причём в процессе его развития можно выделить следующие этапы:

1) собственно биосфера (воздействие человека на природную среду не приобрело глобального масштаба);

2) биотехносфера – биосфера сегодняшнего дня, результат длительного преобразующего влияния технически вооружённого человеческого общества на природу Земли;

3) ноосфера – состояние биосферы, характеризующееся гармонией и единством природы и общества на основе позитивной и созидательной научной мысли.

 

Дифференциация ГО. Природный комплекс. Понятие о географическом ландшафте.

Дифференциация ГО – разделения единого планетарного комплекса на объективно существующие природные комплексы разного ранга. Дифференциация зависит от зональных и азональных причин.

Природный комплекс (ПК) – саморегулируемая и самовоспроизводимая система взаимосвязанных компонентов и комплексов более низкого ранга (определение Ф.Н. Милькова). Природные комплексы делятся на природно-территориальные (ПТК) и природно-аквальные (ПАК). Наиболее изучены ПТК суши. ПК характеризуется относительно однородным участком поверхности, единство которого обусловлено географическим положением, единой историей развития, происходящими в его пределах природными процессами.

Все ПК образованы взаимодействием компонентов: горные породы, вода, воздух, растения, животные, почвы. Роль компонентов в ПК учеными оценивается по-разному. Н.А. Солнцев отводит литогенной основе (комплекс геолого-геоморфологических особенностей изучаемой территории, включая стратиграфию, литологию горных пород, тектонику, рельеф) роль ведущего фактора в формировании и устойчивости ПК. Впервые мысль о равнозначности всех компонентов была высказана В.В. Докучаевым, применительно к почве. Ученый считал, что почва есть результат взаимной деятельности климата, растительности, животных, грунтов.

Ряд авторов выделяют полные и неполные ПК (Д.Л. Арманд): полные образуются всеми компонентами, в неполных отсутствуют один или два компонента.

ПК по своим размерам и сложности подразделяются на планетарные (ГО), региональные (материки, физико-географические страны и области, географические пояса и зоны), локальные (приурочены к мезо- и микроформам рельефа – оврагам, речным долинам, моренным холмам).

Основной единицей в ландшафтоведении предлагается считать ландшафт, т.е. такой полный ПТК, в структуре которого непосредственно участвуют все основные компоненты, начиная с земной коры и заканчивая животными, населяющими данный ПТК.

Термин «ландшафт имеет» международное признание. Он взят из немецкого языка (Land – земля и schaft – взаимосвязь).

В научную литературу термин ландшафт был введен в 1805 г. немецким ученым А. Гоммейером. Под ландшафтом он подразумевал совокупность обозреваемых из одной точки местностей, заключенных между ближайшими горами, лесами и другими частями земли. В нашей стране развитие ландшафтоведения связано с трудами выдающихся географов Л.С. Берга, А.А. Григорьева, С.В. Калесника, Ф.Н. Милькова и др.

Известны три трактовки географического ландшафта.

Ландшафт – территориально ограниченный участок земной поверхности, характеризующийся генетическим единством и тесной взаимосвязью слагающих его компонентов (А.А. Григорьев, Н.А. Солнцев. С.В. Калесник, А.Г. Исаченко).

Ландшафт – обобщенное типологическое понятие физико-географических комплексов. Эта точка зрения развивалась в трудах Б.Б. Полынова Н.А. Гвоздецкого. В одну типологическую единицу включаются территориально разрозненные, но сходные относительно однородные комплексы. Ландшафт характеризуется однотипной растительностью, увлажнением, но территориально может находиться на разных континентах (ландшафт степей существует на разных материках в Северной Америке и Евразии).

Ландшафт – общее понятие, синоним региональных и типологических комплексов любого таксономического ранга. Его можно сравнить с такими понятиями как климат, рельеф, при определении которых не имеется ввиду конкретная территория. Этого определения придерживаются Ф.Н. Мильков, Д.Л. Арманд. Ю.К. Ефремов.

В СССР существовал государственный стандарт понятий и терминов. В ГОСТе предусматривалось определение ландшафта как общего понятия. Ландшафт – территориальная система, состоящая из взаимодействующих природных и антропогенных компонентов и комплексов более низкого таксономического ранга.

При всех различиях определений ландшафта между ними есть сходство в самом главном – признании взаимосвязей между элементами природы в реальных природных комплексах.

Ландшафт представляет собой сложное природное образование. Он состоит из более мелких природных комплексов. Основные морфологические части ландшафта: фации, урочища (дополнительные – подурочища и местности – сочетание урочищ). Они определяют морфологическую структуру ландшафта, образуя в его пределах закономерные сочетания.

Физико-географическая фация – самый простой природный комплекс, характеризующийся наибольшей однородностью природных условий. Для нее характерно:

-положение в пределах одного элемента или микроформы рельефа (склон, вершина холма, нижняя часть склона);

-одинаковый литологический состав почвообразующих пород и одна почва;

-одинаковый режим тепла и влаги, один микроклимат;

-один биоценоз.

В условиях ненарушенной растительности границы фации хорошо отражает растительность – фация совпадает с фитоценозом. Пример фации – пологий склон холма северной экспозиции с дерново-среднеподзолистыми, суглинистыми почвами под елово-широколиственным лесом.

Урочище – природный комплекс, образованный закономерным сочетанием фаций или их групп (подурочищ). Обычно урочиша соответствуют мезоформе рельефа. Для них характерно определенное сочетание почвообразующих пород, режимов тепла и влаги и почвенно-растительного покрова. Примером урочища является урочище холма или оврага.

Совокупность ландшафтов образуют системы более высокого уровня – тип ландшафта. В своих названиях они повторяют географические зоны (тундровый, таежный и т.д.), но географические зоны непрерывны, они очерчивают на равнинах сплошной массив какого-либо одного типа ландшафта, фрагменты которого продолжают встречаться за его пределами – в смежных зонах и горных странах.

Класс ландшафтов – совокупность типов ландшафтов. Общепринято деление на два класса: равнинные и горные (отличаются наличием высотной поясности). Типы и классы ландшафтов раскрывают структуру крупнейших региональных единиц – физико-географических стран и материков.

Все ландшафты суши – материков и островов – объединяются в отдел ландшафтов, который следует считать высшей типологической единицей.

Схема типологических единиц ландшафта (по Ф.Н Милькову) выглядит следующим образом: тип фации – тип урочища – тип местности – тип ландшафта – класс ландшафта – отдел ландшафта (Г.И. Марцинкевич и др. на территории Беларуси различают вид ландшафтов – род ландшафтов – тип ландшафтов – класс ландшафтов).

Типологические комплексы, обладая морфологическим (внешним) единством, в отличие от региональных характеризуются не сплошным, а разорванным ареалом. Типологические комплексы раскрывают морфологию региональных единиц, которые помогают выделить региональные особенности типологических единиц.

Физико-географическое районирование заключается в выявлении и картировании природных комплексов, обладающих внутренним единством и своеобразными индивидуальными чертами в их всесторонней характеристике.

По зональным признакам ГО делится на географические пояса, зоны и подзоны (деление по зональному признаку разработано А.А. Григорьевым). См. лекция 9.

По азональному признаку выделяются следующие таксономические единицы: физико-географическая страна, физико-географическая область, физико-географический район.

Физико-географическая страна – часть материка, сформировавшаяся на основе крупной тектонической структуры и общности тектонического режима в неоген-четвертичное время, характеризующаяся единством орографии, макроклимата и своей структурой горизонтальных зон и высотных поясов (Восточно-Европейская равнина, Западно-Сибирская низменность, Урал).

Физико-географическая область – часть физико-географической страны, обособившаяся главным образом за неоген-четвертичное время под влиянием тектонических движений, морских трансгрессий, материковых оледенений или деятельности талых ледниковых вод, с однотипной морфоскульптурой или их закономерным сочетанием, с одним типом климата и своеобразным проявлением зональности или высотной поясности (Мещерская низменность, Среднерусская возвышенность).

Физико-географический район (ландшафт) – часть области, однородная по зональным или азональным признакам, это генетически единая территория, характеризующаяся специфической морфологической структурой.

Схема таксономических единиц может быть образована чередующимися зональными и азональными комплексами.

 

В связи с воздействием человека на природу в географию вошли понятия «антропогенный ландшафт» и «культурный ландшафт».

Природный комплекс в настоящее время рассматривается как сложная система, состоящая из двух подсистем – природной и антропогенной. Природная подсистема образуется при взаимодействии природных компонентов – воды, воздуха, горных пород, растений, животных, почв. Антропогенная подсистема включает две части: хозяйственную и управленческую. Комплексы ноосферного этапа должны обладать единством, они образуются взаимодействием всех компонентов, включая живое и разумное вещество.

Созданные людьми ландшафты называются антропогенными, техногенными или искусственными. По мнению ряда авторов (Л.П. Шубаев), термины «антропогенный и техногенный» не совсем удачны, поскольку ландшафты не созданы людьми, а только ими преобразованы. Основные зональные компоненты – горные породы, почвы, воздух, воду – человек пока изменяет мало. Сочетание естественных и искусственных ландшафтов Л.П. Шубаев предлагает назвать современными ландшафтами.

По другой концепции, антропогенными ландшафтами являются как вновь созданные, так и измененные человеком природные комплексы. По мнению Ф.Н. Милькова (1990), антропогенный ландшафт – комплекс, в котором на всей площади или большей ее части коренному изменению подверглись все или один из компонентов природного ландшафта.

Классифицируют антропогенные ландшафты по соотношению целенаправленных изменений, по виду человеческой деятельности, по степени изменения по сравнению с исходным состоянием, по последствиям изменений.

По степени изменения все ландшафты можно разделить на шесть групп (А.Г. Исаченко, 1965):

-неизмененные – ледники, нетронутые участки тропических пустынь, заповедники;

-слабо измененные – естественные луга и пастбища, водоемы;

-нарушенные нерациональным использованием – вторичные обедненные леса;

-сильно нарушенные и превращенные в бедленд – эродированные, вторично засоленные, вторично заболоченные земли, горные выработки;

-преобразованные или культурные – поля, сады, плантации, парки;

-искусственные – города, села, дороги, плотины.

По виду человеческой деятельности выделяются:

1.Сельскохозяйственные ландшафты. По оценкам специалистов пашни, сады, плантации занимают 11% обитаемой суши. Предельная площадь экономически выгодных для эксплуатации земель составляет 1,5 млрд. га, т.е. все доступные земли уже использованы.

2.Проышленные ландшафты. Наиболее развиты карьерные и отвальные комплексы, терриконы. На Земле на долю населенных пунктов, промышленности и транспорта приходится 2% суши, в наиболее развитых странах этот процент достиг 5%.

3.Линейно-дорожные ландшафты, связанные с железными, автомобильными и другого вида дорогами, нефте- и газопроводами. На весь мир приходится 24 000 тыс. км протяженности автомобильных дорог (18 млн. км с твердым покрытием). Густота дорог достигла 180 км/км2 (Великобритания – 1580 км/км2, Франция – 1480 км/км2). В мире длина железнодорожной сети составляет 1,2 млн. км, в России – 87 тыс. км. Длина нефте- и газопроводов – 1,5 млн. км (в США – 325 тыс. км, России – 66 тыс. км).

4.Лесные ландшафты (лесокультуры и вторичные леса на месте вырубок и антропогенных гарей).

5.Водные ландшафты (водохранилища, пруды, каналы). К началу 90-х годов на планете эксплуатировалось более 40 000 водохранилищ, их объем достигал 6 тыс. км3, площадь водного зеркала 400 тыс. км2. К крупнейшим водохранилищам мира относятся Виктория (Кения) – 204,8 км3, Братское (Россия) – 169,3 км3, Кариба (Замбия) – 160,3 км3.

6.Рекреационные ландшафты, зоны отдыха населения и активного туризма.

7.Селитебные – ландшафты городов и других населенных пунктов.

8.Беллигеративные (военные) ландшафты – сторожевые курганы, крепостные валы, засеки, воронки взрыва, траншеи.

По последствиям изменений выделяют культурные и акультурные ландшафты (А.Г. Исаченко).

Воздействие человека на ландшафт следует рассматривать как природный процесс, в котором человек выступает как активный компонент. Сохранность антропогенного ландшафта, его устойчивость (способность сохранять преднамеренно нарушенное состояние) зависит от многих факторов, но в основном определяется постоянным, направленным воздействием человека. Степень устойчивости зависит от того, на какой компонент воздействует человек(изменение рельефа или горных пород приводит к изменению всего комплекса в целом).

Искусственно созданные устойчивые ландшафты называются культурными. В них структура рационально изменена на научной основе и в интересах общества. Критерии культурного ландшафта определяются общественными потребностями. Они характеризуются высокой производительностью и экономической эффективностью, являются оптимальной средой для жизни человека.

Географические принципы организации культурного ландшафта (А.Г. Исаченко):

-культурный ландшафт не должен быть однообразным сложность структуры обеспечивает устойчивость системы (например, лучше чередовать небольшие массивы пашни и леса, чем укрупнять пашни с риском вызвать эрозию);

-в культурном ландшафте не должно быть свалок, пустошей, карьеров; все они должны быть рекультивированы;

-из всех видов использования земель приоритет надо отдать растительному покрову, необходимо стремиться к максимально возможному увеличению площади лесов;

-должно быть отведено место для сохранения естественных ландшафтов (заповедники, резерваты, заказники, национальные парки).

Экологический потенциал культурного ландшафта – его способность удовлетворять потребность человека во всех первичных средствах существования – воздухе, свете, тепле, воде, источниках пищи, а также в природных условиях для трудовой деятельности. Следовательно, экологический потенциал определяет степень комфортности территории.

 

Date: 2015-09-17; view: 1314; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию